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Abstract

In mental health assessment, it is validated that nonverbal cues like facial expressions can be
indicative of the depressive disorder. Recently, the multimodal fusion of facial appearance and
dynamics based on convolutional neural networks has demonstrated encouraging performance in
depression analysis. However, correlation and complementarity between different visual modal-
ities have not been well studied in prior methods. In this paper, we propose a sequential fusion
method for facial depression recognition. For mining the correlated and complementary depres-
sion patterns in multimodal learning, a chained-fusion mechanism is introduced to jointly learn
facial appearance and dynamics in a unified framework. We show that such sequential fusion can
provide a probabilistic perspective of the model correlation and complementarity between two
different data modalities for improved depression recognition. Results on a benchmark dataset
show the superiority of our method against several state-of-the-art alternatives.

Keywords— Depression recognition, facial representation, convolutional neural network, multimodal
learning, sequential fusion.

1 Introduction
Major depressive disorder (MDD) is a psychological disorder that exhibits feelings of sadness, loss, or anger
that may impact a person’s usual social activities. At a global level, over 300 million people of all ages suffer
from different levels of depression, equivalent to 4.4% of the world’s population [37]. A depressive episode can
be classified into a mild, moderate, or severe level, depending on the symptoms. Mild depression may bring
difficulties in continuing with ordinary work and social activities. More seriously, the feeling of depression
may occur comorbidity with self-mutilation [39], and depressed people are more likely to commit suicide than
the general population [29]. Early detection of depressive or other mental disorders provides a possible way
for mental intervention [23].

In clinical practice, the diagnosis procedure for MDD can usually be labor-intensive and highly relies on ex-
pertise observations. Due to the increasing number of people suffering from MDD around the world, methods
for automated depression analysis appear to be urgent for objective and efficient diagnosis. Recently, auto-
mated depression diagnosis based on computer vision techniques has drawn increasing attention [46], and
the significance of the verbal cues for depression analysis has been demonstrated in various depression de-
tection/recognition tasks [53, 9, 8, 33, 55, 31]. Besides, visual cues like facial expression and facial dynamics
have also proven to be effective in depression analysis [17, 52, 1, 60]. This paper investigates facial depression
recognition, aiming to predict the depression level for a given face video based on the BDI-II metric [3].

While encouraging progress has been made over the past few years, automated depression analysis in
videos remains challenging due to the following reasons:

On one hand, unlike those large-scale image datasets (e.g., ImageNet [12]) for visual recognition [26], the
size of most existing depression datasets (e.g., AVEC 2014 [46]) is relatively small due to the privacy concerns.
While representation learning based on convolutional neural network (CNN) has been proved to be more effec-
tive than hand-crafted descriptors in visual-based depression recognition [60], the lack of labeled data makes
the model training with deep networks prone to over-fitting in practice.

On the other hand, many learning methods in the literature have been devoted to multimodal fusion of au-
dio and/or video features for depression recognition [60, 33, 1], which have demonstrated boosted recognition
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performance by exploiting the complementary information encoded in different modalities. However, essen-
tial correlation and diversity between different visual modalities have not been well investigated in previous
visual-based methods, especially for multimodal fusion of visual cues with deep CNN architecture.

In this paper, we propose a multimodal deep learning approach for facial depression recognition to address
these issues. Specifically, a sequential fusion of facial appearance and dynamics is introduced to facilitate
such multimodal representation learning. Here, facial appearance and dynamics are adopted as the basis
modalities in our multimodal fusion framework, as they have been validated to be effective in visual-based
depression diagnosis [60]. Hence, a fusion between the two modalities is first operated on the blocks of a
two-stream CNN. By such fusion of mid-level features in the CNN training, an initial interaction is conducted
to optimize the complementary patterns. Then, the extracted feature, together with the predicted label from
the first stream (e.g., RGB modality), is fed into the second stream (e.g., Optical Flow modality) to refine the
final prediction. We show that such sequential fusion can provide a probabilistic perspective about model
correlation and complementarity between two different data modalities for improved depression recognition.
We conduct experiments on the benchmark dataset (AVEC2014), and the results show the superiority of our
method against several state-of-the-art alternatives. The main contributions of this paper are:

• We proposed a sequential chained-fusion approach for depression recognition. With a probabilistic per-
spective, the proposed approach models the correlation and complementarity between facial appearance
and facial dynamics at several network layers, such that the complementary and correlation information
of different visual cues extracted from videos could be well exploited in model learning (Section 3).

• We evaluate our approach on the benchmark dataset and empirically show improvement over several
state-of-the-art alternatives (Section 4).

The rest of this paper is organized as follows. We first give a brief review of related work in Section 2, and
then detail the proposed sequential fusion method in Section 3. Experimental settings, results and discussions
are presented in Section 4, and Section 5 concludes the paper.

2 Related work
This section briefly reviewed two related topics: 1) visual-based depression recognition and 2) multimodal
learning with deep architectures.

Automated Depression Recognition. Depression analysis based on various behavioral signals has drawn
increasing attention in the affective computing community. Such feasible signals include the vision- and
speech-based cues of human communication. While several works in the literature focus on this research topic,
we are interested in the visual-based approaches for depression recognition. In the AVEC 2013 competition[47],
a facial descriptor named the local phase quantization (LPQ) [35] was used as a baseline for facial depression
recognition, where the extracted LPQ features for each video frame are further employed to train a support
vector regression (SVR). In [9], Cummins et al. used the pyramid of histogram of gradients (PHOG) [4] and
the space-time interest points (STIPs) [27] for extraction of behavioural cues for depression analysis. Meng
et al. [33] proposed to use motion history histogram (MHH) [34] feature to model motion in videos, and then
use the partial least squares (PLS) [10] for training regression model. In [52], the motion cue is encoded by
the LPQ-TOP feature extracted from sub-volumes of the cropped facial regions, by which the behavior pattern
dictionary can be obtained based on sparse coding.

In the AVEC 2014 competition [46], the local motion descriptor LGBP-TOP [2] and the SVR were employed
as the baseline video description and prediction model, respectively. In [38], various local motion features
extracted from sub-volumes of the detected faces were used for training an SVR-based prediction model. Jan
et al. [22] proposed a 1D MHH based on some local descriptors to train a PLS regressor for final prediction.
In [24], the baseline LGBP-TOP combined with LPQ was used as the video descriptor for depression prediction.

The aforementioned depression recognition methods proposed to use hand-crafted descriptors, which are
generally less effective to model and reveal high-level semantic cues. Recently, depression feature learning
based on deep CNNs achieves considerable progress. For example, Zhu et al. [60] proposed jointly learning
the facial appearance and dynamics based on a two-stream CNN, in which two different features are fused at
a fully-connected (FC) layer. Improved performance reported in their experiments indicated the efficacy of
such a simple fusion manner. Most recently, Uddin et al. [45] introduced a new two-stream network for deep
spatiotemporal feature learning, in which spatial information is extracted by a ResNet network, and they used
a volume local directional number (VLDN) based feature descriptor to model facial motions. Zhou et al. [58]
proposed a deep network named DepressNet to learn facial depression features with visual explanation, such
that facial salient regions with different depression levels can be detected by using the generated activation
mapping. Later, Zhou et al. [59] proposed to jointly learn the feature embedding and label distribution to
address the issue of deep representation learning on a limited amount of labeled depression data, and the
improvement by such learning scheme was reported in their experiments in comparison several state-of-the-
art alternatives. Besides deep CNNs, there are several methods for image feature learning such as binary
descriptor [13].
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Figure 1: Overview of our proposed sequential fusion approach for facial depression recognition.
The (mid- and high-level) features extracted from the first stream (RGB modality) together with
the predicted label are fed into the second stream (dynamics modality) for refinement of the final
prediction.

Multimodal Deep Representation Learning. In the multimodal setting, visual data consists of multiple
input modalities [6, 7, 48, 5], and each one may have a different representation and structure. Intuitively,
useful representations could be learned from such multimodal data by fusing them into a joint representation
to characterize the real-world semantic concept that the visual data corresponds to. In practice, however, it
is much more difficult to model and discover the nonlinear correlation and diversity across modalities than
those among features in the same modality. Recently, a good number of multimodal deep learning methods
have been proposed to better exploit useful information from different modalities for more robust visual anal-
ysis [48, 49, 14, 28, 60, 61, 45][54, 21, 30, 16, 15]. In [43], Srivastava et al. proposed a multimodal learning
method with a deep Boltzmann machine (DBM) to jointly learn multimodal feature representations. They
approached this by adding a concatenated layer that connects DBMs from different modalities. In [54, 21],
multi-metric learning methods were applied to exploited multi features of human faces. Yan et. al. [54] pro-
posed a jointly learning method to capture multiple features from multiple distance metrics. In [21], Hu et.
al. further studied multi-view metric learning in a sharable and individual way, which shown the superiority
of sharing features from different view. In [14], a two-stream CNN with an additional multimodal fusion layer
was proposed for RGB-D object recognition. Motivated by the observation that the data from different modal-
ities may contain modal-specific patterns as well as common patterns, Wang et al. [48] proposed a shareable
and specific multimodal feature learning framework for RGB-D object recognition. Li et. al. [30] proposed a
global-local framework to extract pose, appearance and motion features for RGB-D gesture recognition. By im-
posing the representation learning of associations between different modalities, Zolfaghari et al. [61] designed
a chained multi-stream network to fully exploit the pose, motion, and appearance cues for action classification
and detection. Feichtenhofer et. al. [16] proposed a two-stream CNN architecture to fuse a spatial and tem-
poral network at a convolutional layer instead of at the softmax layer, which boosted performance on action
recognition problem with a substantial saving in parameters. To further boost performance of action classifi-
cation and detection, Feichtenhofer et. al. [15] presented SlowFast Networks for video recognition which was
inspired by biological studies on the retinal ganglion cells in the primate visual system.

Our proposed method is related to the multimodal deep learning methods for visual recognition, which
aimed to fuse multiple responses from the CNNs trained with different modalities of visual data. However, our
work differs from them in the fusion manner. Our work aims at deep fusion between features from different
modalities in a sequential manner, while only a simple fusion at the FC layer was performed in [45] as well
as [60]. Most similar to ours is the work [61] which also performed fusion in a chained manner; however, the
fusion of mid-level features in the CNN training was not involved in their approach, and hence our sequen-
tial fusion represents a more deep fusion mechanism that can be more suitable for multimodal representation
learning with limited labeled depression data, as indicated in our experiments.

3 Our Approach
Predicting the severity of facial depression is a process of learning spatio-temporal features related to human
emotion categorization [50] from face videos. The facial appearance of a subject is one of the important visual
patterns for depression recognition. At the same time, facial dynamics characterized by optical flow captures
the temporal variations of appearance across frames. As such, we propose a sequential fusion approach to
investigate the correlation and complementarity between two different data modalities for depression analysis.
As shown in Fig. 1, we use a two-stream network architecture, where the encoders for each stream have the
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same backbone structure (can be any off-the-shelf CNNs).
Fundamentally, depression estimation can be viewed as a regression task, and hence we employ the mean

square error (MSE) as the loss function. Mathematically, the loss L is defined as:

L =
1

2N

N∑
i=1

‖yi − ŷi‖2, (1)

where N is the number of the samples, ŷi is the output prediction of the second stream of our network for the
ith sample, and yi is its ground-truth label.

3.1 Appearance-CNN
Convolutional Neural Networks (CNNs) have been proved with powerful capability on image classification
tasks over large-scale image data. Conversely, CNN is not a proper option to capture features from the dataset
with a limited size. For depression estimation, available datasets are usually with limited data and subjects.
To handle this issue, we employ the pre-training and fine-tuning strategies to train the facial appearance CNN
(A-CNN).

Due to time restrictions or computational restraints, it’s not always possible to build a deep model from
scratch which is the reason why we use pre-trained model. To achieve facial representations, we train two pre-
trained deep networks (e.g., GoogLeNet [44] and ResNet-50 [18]) over CASIA-WebFace database [56], which is
a public face recognition database containing 494,414 facial images from 10,575 subjects.

After the pre-training step, we can obtain the general facial features through the pre-trained model while
those features are not relevant to facial depression. Hence, depression data are fed into the pre-trained model
for fine-tuning, such that the final model is capable of accurate depression estimation.

3.2 Dynamics-CNN
Along with facial appearance, facial dynamics is also an indispensable component in our proposed model. The
dynamics-CNN (D-CNN) is built upon the same backbone as the A-CNN with the optical flow data. Unlike the
static RGB data, facial dynamics model the motion patterns inherent in faces that can be highly indicative for
visual depression analysis.

We compute the optical flow with the duality-based approach [57], which is a decent method with suffi-
ciently fast speed. To feed the optical flow data into the D-CNN, we transform the optical flow signal into a
3-dimensional image data (x,y,m), where x, y and m represent the x-component, y-component and the magni-
tude of the flow, respectively. For better observation and calculation, we multiply each image by 16 and convert
it to the closest integer between 0 and 255 [51].

Similarly, we employ the same architecture, configurations, and loss used in the appearance CNN to train
the dynamics CNN. The difference lies in that the input to the dynamics stream is the flow image computed
from video frames, and there is no pre-training step in D-CNN.

3.3 Sequential Fusion
Since Simonyan et al. [40] proposed a simple fusion framework with two separate convolutional networks on
raw images and optical flow, respectively, multi-stream architectures entered the public consciousness and
became a popular approach to handle multimedia tasks.

The baseline fusions are illustrated in Fig. 2, where the solution (a) applies the normal concatenation to
form the input features of a set of fully-connected layers, which combines features from two streams directly,
and the two CNNs are independent. In such a case, the learning manners of the two streams exert a slight
influence on each other. Furthermore, as the input to the dynamics, CNN is the optical flow between several
sequential frames; the changes between continuous frames are minor and difficult to distinguish. In order to
achieve a compact and discriminative multimodal deep representation, a proper fusion method is needed to
gather features from facial appearance and dynamics.

To integrate the two individual deep networks mentioned above, we introduce a sequential fusion approach
based on a two-stream architecture. By making use of the features from both modalities, a Markov chain is es-
tablished to integrate the two streams, which may refine the depression prediction sequentially. Considering
different modality as the main input, a refined prediction is achieved by combining the hidden features (e.g.,
high-level features) and the predictions from the previous stream (see Fig. 2(b)-(c)). However, such fusion
is made only after the FC layers, which means the mid-level features before the FC layers have not been ex-
ploited for better fusion. With the limited promotion of the feature fusion, the refinement of the predictions is
improved, though the improvement is not significant.

Unlike the baseline fusion schemes shown in Fig. 2, our proposed sequential fusion (shown in Fig. 1)
perform feature fusion not only after the FC layer, but also on the blocks of CNNs, by which both high-level and
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Figure 2: Different fusion baselines for facial depression recognition. (a) Normally concatenated
features from the dynamics and appearance streams; (b) The features extracted from the dynamics
stream together with the predicted label are fed to the appearance stream for final prediction; (c)
The features extracted from the appearance stream together with the predicted label are fed to the
dynamics stream for final prediction.

mid-level features of the CNNs can be well exploited to model the correlation and complementarity between
different data modalities. In what follows, we give a probabilistic interpretation for such a fusion mechanism.

For different input modalities, we assume that the depression predictions are conditionally independent.
Consequently, we can factorize the joint probability into the conditional probabilities according to the con-
ditional independence property. In a Markov chain, we predict the outputs Y = {y1, y2, . . . , yS } on the given
sequence of inputs I = {I1, I2, . . . , IS } with P (y|I) maximized. Due to the Markov property, we have

P (y|I) = P (y1|I)
S∏
s=2

P (ys |I,y1, . . . , ys−1) (2)

To model the likelihood in (2), the hidden feature and the prediction probability are respectively denoted
by

hs = f ([hs−1,CNN (Is), (y1, y2, . . . , ys−1)]),

P (ys |I,y<s) =N (wTs hs; ȳs,σ
2)

(3)

where s ∈ {1,2, . . . ,S}, f is an activation function, hs−1 denotes the hidden feature from the previous stream,
ys denotes the prediction of the sth stream, ws denotes the regression coefficient vector, ȳs is the ground-truth
label, and σ is a certain standard deviation of the Gaussian N . Here, CNN (·) denotes the convolutionary part
and the first FC layer of the network, which can be any off-the-shelf backbones (e.g., VGG and ResNet).

In the proposed approach, the prediction of the dynamics stream is made conditioned on the appearance
stream as well as the input dynamics data, which means that the final prediction is effected not only by the
input of the current stream but also by the features and predictions from previous streams (see Fig.1). When
the input modalities is I = {Ia, Id } , we have:

ha = CNN (Ia),

P (ya|I) =N (wTa ha; ȳa,σ
2)

(4)

and
hd = f ([ha,CNN (Id ), ya]),

P (yd |I,ya) =N (wTd hd ; ȳd ,σ
2)

(5)

As known to all, maximization of P (yd |I,ya) is equivalent to the minimization of the MSE loss defined in Eq.
(1). Hence, our sequential fusion mechanism has a clear probabilistic interpretation.

It should be noticed that depressed patients are usually slow to initiate actions with stiff facial expressions.
For depression analysis, motion features could be more discriminative than appearance cues. It is observed in
our experiment that using the dynamics stream as the main stream to fuse the appearance stream can perform
better prediction, and it also facilitates the training of the two-stream network. In the inference stage, only the
prediction of the mainstream is used as the final depression prediction.

4 Experiments
To validate the effectiveness of our depression recognition approach, we conduct experiments on the AVEC
2014 benchmark dataset and compare its performance with several state-of-the-art algorithms as well as the
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baselines. In what follows, a description of the dataset, data pre-processing, and experimental setting are first
presented. Then, we present the results and analysis.

4.1 Dataset
We conduct the experiments on a database of the Audio/Visual Emotion Challenge (AVEC) 2014 [46], which
is the most widely-used depression sub-challenge database for depression recognition. In AVEC dataset, to
evaluate the severity, a depression level score is measured by a self-reported 21 multiple-choice inventory–
Beck Depression Index (BDI) [36]. The BDI scores range from 0 to 63, where the lower score represents more
mild symptoms. The score evaluated in [0, 13], [14, 19], [20, 28] and [29, 63] indicate minimal, mild, moderate
and severe depression, respectively. For each video clip, there are 3∼5 annotators predicting the BDI score.

In AVEC 2014, there are 84 subjects, and each subject needs to perform two different tasks named “North-
wind” and “FreeForm” according to the instructions. All subjects in the two tasks speak German. There are 150
videos for each task, and the recordings were equally split into three partitions: training, development, and
test set. Each partition includes 50 videos and has similar distributions in terms of gender, age, and depression
levels for the partitions. All videos are recorded by webcam in a human-computer interaction scenario, and
each video is approximately 2-minute length on average. There are at least three annotators per clip, and most
clips are annotated by 5.

4.2 Data Pre-processing
As the raw data have a certain degree of noisy and redundant information which is irrelevant to depressive
expressions. To extract meaningful information from noise, it is necessary to apply multiple pre-processing
steps on the raw data before feeding it to the model. To avoid the waste of computing resources and speed up
the training, subsampling is performed on the video frames with an interval of 10 frames which is determined
experimentally.

To deal with the raw data, face detection and landmark localization of each subject in the video are imple-
mented by Dlib [25]. After that, the facial region of an image size of 256×256 is cropped and aligned according
to the eye locations.

After the above steps, we compute optical flow over a sequence of facial regions extracted from each video
clip. As the input to dynamics stream, optical flow is computed between two frames which can capture facial
motions known as face “flow images”. A “flow image” has three components (x,y,m), where the first two
channels are x, and y flow values and the third channel is the magnitude of the optical flow normalized between
0 and 255 with a median of 128.

4.3 Experimental Setting
We use two popular network architectures, i.e., VGG-11 [41] and ResNet-50 [18], as the backbone of our two-
stream network to train the appearance and dynamic CNNs. In our experiments, the appearance CNN is pre-
trained on a large-scale face dataset CASIA WebFace [56], while the dynamics CNN is trained from scratch.
The MSE is adopted as the loss function for our depression regression.

The total number of training iterations for the appearance and dynamics CNNs are 400,000 and 600,000,
respectively. We set the initial learning rate to 0.001, and decrease the learning rate by polynomial decay with
power equals to 0.5, and set the momentum to 0.9 with a weight decay of 0.0002. For the joint training, the
total number of iterations is 200,000 with an initial learning rate of 0.0001.

We use the mean absolute error (MAE) and root mean square error (RMSE) to measure the overall recogni-

tion performance. They are defined by MAE = 1
N
∑N
i=1|yi − ŷi | and RMSE =

√
1
N
∑N
i=1(yi − ŷi )2, where N is the

number of data samples, yi and ŷi are the ground truth and the prediction for the ith sample.

4.4 Experimental Results
4.4.1 Performance of Individual Models

We first investigate the impact of different fusion models (see Fig. 2) in our fusion framework for depression
analysis. Six baselines are defined for evaluation of the performance of individual models: 1) Appearance
CNN, 2) Dynamics CNN, 3) Normal Concat: fusion by normal concatenation on the FC layer of the two-
stream CNN, 4) Appearance (main)+Dynamics: Dynamics stream is fed to Appearance stream for sequential
fusion, 5) Dynamics (main)+Appearance: Appearance stream is fed to Dynamics stream for sequential fusion,
6) DeepFusion: Appearance stream is fed to Dynamics stream for a sequential fusion of both mid-level and
high-level features.

As shown in Table 1, our proposed DeepFusion achieves the MAE/RMSE of 6.16/8.13, which consistently
outperforms the other baselines. Specifically, two sequential fusion models (dynamics CNN as the mainstream)
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Table 1: Ablation study of our approach on AVEC 2014

Model MAE RMSE
Appearance CNN 6.60 8.88
Dynamics CNN 8.64 10.71
Normal Concat 6.72 8.68
Appearance(main)+Dynamics 6.71 8.58
Appearance+Dynamics(main) 6.41 8.70
DeepFusion (proposed) 6.16 8.13

Table 2: Depression prediction results with different backbones on AVEC 2014

Model MSE RMSE
Appearance CNN(VGG) 8.19 10.34
Dynamics CNN(VGG) 9.54 11.49
Normal Concat(VGG) 9.54 11.50
DeepFusion(VGG) 7.54 9.79
Appearance CNN(ResNet-50) 6.60 8.88
Dynamics CNN(ResNet-50) 8.64 10.71
Normal Concat(ResNet-50) 6.72 8.68
DeepFusion(ResNet-50) 6.16 8.13

perform better than other individuals, indicating the efficacy of such fusion mechanism. On the other hand,
we can see that appearance CNN as the mainstream for sequential fusion may not be suitable for depression
analysis, as the motion cues may play a more important role in features fusion for final prediction. Finally,
the proposed DeepFusion performs better than Dynamics (main)+Appearance, indicating that integration of
mid-level features in the sequential fusion framework can further boost the overall prediction performance.

In addition, we investigate the impact of different backbones in our proposed approach. As shown in Fig.
2, prediction models built upon ResNet-50 [18] consistently perform better than those built upon VGG-11 [41].
Also, our proposed DeepFusion achieves the best performance on both backbones in terms of MAE and RMSE.

4.4.2 Comparison with Previous Methods

We compared our proposed approach with several state-of-the-art depression recognition methods, and the
results are presented in Table 3. For a fair comparison, the compared eight methods are based on the visual
modality (e.g., face videos). Specifically, six of them are also deep learning-based solutions, and the other two
are shallow learning models with hand-crafted video descriptors.

In [46], the baseline model for AVEC 2014 employed the epsilon-SVR with intersection kernel [32] trained
using LGBP-TOP features. On the AVEC 2014 dataset, our approach beats the baseline approach by dropping
the MAE by 2.70 and RMSE by 2.83. In [20], an SVR trained with the dynamic feature descriptors MRLBP-TOP
and DPFV achieved the MAE/RMSE of 7.21/9.01. Also, our approach outperforms this shallow learning-based
solution by a significant margin.

When compared to other seven deep learning-based works [15], [11, 45, 58, 59, 42, 19], our approach
achieves the second-best performance on the AVEC 2014 dataset. In [15], the SlowFast networks transferred
from action recognition model achieved the MAE/RMSE of 6.78/8.40. In [11], the combination of the global
and local Convolutional 3D networks achieved the MAE/RMSE of 6.59/8.31. In [45], the MAE/RMSE of
6.86/8.78 was achieved by utilizing Bi-LSTM, whose input is the output of a deep CNN and TMP. In a very
recent work [19], both local and global attention CNN are introduced for depression recognition and reduced
the MAE/RMSE to 6.51/8.30. In [58], deep depression representation with visual explanation achieved the
MAE/RMSE of 6.60/8.88, and later in [59], the deep metric learning-based solution achieved the MAE/RMSE
of 6.59/8.30. Our approach consistently outperforms the aforementioned deep learning-based methods in
terms of MAE and RMSE. The best-performed solution among the compared methods is the spectral represen-
tation of behavior primitives [42], which achieved the MAE/RMSE of 5.95/7.15.

5 Conclusion
In this paper, we have proposed a deep multimodal learning method for the representation fusion of facial
appearance and dynamics. To model the correlated and complementary depression patterns in multimodal
learning, a chained-fusion mechanism is introduced to jointly learn facial appearance and dynamics in a unified

7



Table 3: Comparison with previous methods on AVEC 2014

Methods MAE RMSE
LGBP-TOP+SVR [46] (2014) 8.86 10.86
MRLBP-TOP+DPFV+SVR [20] (2018) 7.21 9.01
SlowFast Networks [15] (2019) 6.78 8.40
C3D(Global+Local) [11] (2019) 6.59 8.31
VLDN+Bi-LSTM+TMP [45] (2020) 6.86 8.78
DepressNet [58] (2020) 6.60 8.88
DJ-LDML [59] (2020) 6.59 8.30
Spectral-Representation [42] (2020) 5.95 7.15
DLGA-CNN [19] (2021) 6.51 8.30
DeepFusion (proposed) 6.16 8.13

framework. We have shown that such sequential fusion provides a clear probabilistic perspective of the model
correlation and complementarity between two different data modalities for improved depression recognition.
Experimental results on a benchmark dataset demonstrated the efficacy of our method when compared to
several state-of-the-art alternatives. In future work, investigation of the private-share model for multimodal
depression representation learning appears to be an interesting topic.
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