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Introduction

A knowledge graph is a structured representation of facts, consisting of entities, relationships,
and semantic descriptions.
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(a) Factual triples in knowledge base. (b) Entities and relations in knowledge graph.

Figure: An example of knowledge base and knowledge graph.

(Ji et al., 2022)
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Why Knowledge Graphs?

e Context:
® entities (real-world objects and abstract concepts)
® relation between entities, types, and properties

°

Relational Reasoning

Intrinsic Explainability

Others: efficient search, flexibility ...

This presentation:
® How to represent and encode factual knowledge triples

® Knowledge graphs applied to NLP and healthcare tasks.
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How to Learn Knowledge Graph Representation
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(a) Translational distance-based (b) Semantic similarity-based
scoring of TransE. scoring of DistMult.

Figure: Illustrations of distance-based and similarity matching based scoring functions taking
TransE (Bordes et al., 2013) and DistMult (Yang et al., 2015) as examples.
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Representation Space
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Point-Wise Space: widely
applied

Complex Space: real and
imaginary parts

Gaussian distribution:
(un)certainties of entities and
relations

Manifold Space: a set of points
with neighborhoods by the set
theory
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Encoding Models

encode the interactions of entities and relations through specific model architectures,
¢ linear/bilinear models: relations as a linear/bilinear mapping by projecting head entities
into a representation space close to tail entities
® factorization models: decompose relational data into low-rank matrices for representation
learning

® neural networks: encode relational data with non-linear neural activation and more
complex network structures by matching semantic similarity of entities and relations

Summa
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Linear/Bilinear and Factorization Models

Linear scoring function

gy =mr (1) ®

Bilinear scoring function

f,(h,t) = hTM,t )

Factorization

RESCAL (Nickel et al., 2011)

three-way rank-r factorization RESCAL over each relational slice of knowledge graph tensor.

X, ~ AR AT (3)
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Neural Networks

MLP ]
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NTN (Socher et al., 2013) 0 M
fi(h,t) =r o(h Mt+M,1h+ M, t+b,), (5) ]
,,,,, Filters ]
CNN input triples into dense layer and Convolution ~ Features g...o
convolution operation to learn semantic maps
representation Figure: CNN (Nguyen et al., 2018)
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Neural Networks

GCN (Shang et al., 2019) acts as encoder of
knowledge graphs to produce entity and
relation embeddings.

Knowledge Graph Representation Learning
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Figure: GCN (Shang et al., 2019)
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Neural Networks
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Figure: RSN (Guo et al., 2019)
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Neural Networks

Transformers
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Figure: CoKE (Wang et al., 2019)
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Incorporate Knowledge Graphs for NLP

Three paradigms:

® Incorporate large-scale knowledge graph in pretraining (in Sec. 2)
® Inject knowledge into model architecture [e.g., SentiLSTM (Ma et al., 2018) ]

¢ Infuse knowledge-aware representations into text features [e.g., CompareNet (Hu et al.,
2021)]
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Knowledge-aware Language Models

® The success gained by pretraining self-supervised language models

® |ntegrating factual knowledge into language representation via pretraining
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Knowledge-aware Language Models
Discriminating informative entities
® ERNIE-Tsinghua (Zhang et al., 2019): entity & random masking
e ERNIE-Baidu (Sun et al., 2019): entity and phrase masking
® GLM (Shen et al., 2020): graph-guided (linking) entity masking
Subgraph extraction
e BERT-MK (He et al., 2020): knowledge subgraph (multi-head attention)
® CoLAKE (Sun et al., 2020): word graph & knowledge subgraph (concat)
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Knowledge-aware Language Models

Multi-label Concept (Synonym) Modeling
¢ UmIsBERT (Michalopoulos et al., 2021): concepts in UMLS Metathesaurus
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Joint Training
e KEPLER (Wang et al., 2020): knowledge embedding + MLM losses
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NLP Applications: Sentiment Analysis

@ Sentic LSTM (Ma et al., 2018)
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

NLP Applications: Fake News Detection
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NLP Applications: Healthcare

Medical NLI (Sharma et al., 2019)

€w = EBioELMo,w P €DistMult,w P €Senti,,

Medical Code Prediction

® Code-wise attention
o = softmax (H'v))

® Aggregation:
U=AW,S+D"Wy

C: code-aware document
representations

Code-wise
Attention
Code Probability Distribution

A Clinical Text
This was a 51 year
old woman who
entered via the
emergency room
after a fall. She was
transferred from an
outside hospital -+

H: document
representations.

Code Hierarchy

D: code-aware
document
reprosentations
S: document-code
similarity scores
""""""""""""" Code Co-occurrence
H ICD-9 Descriptor V: code vectors Encoding via GCN
|+ 460-519 - DISEASES OF RESPIRATORY SYSTEM
' - 460 - Acute Nasopharyngitis
! - 461 - Acute Sinusitis
H - 461.0 - Maxillary
' - 461.1 - Frontal
!
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Summary

Today's presentation:

® Knowledge Graph Representation Learning (three aspects)

® Knowledge-aware NLP Applications (three paradigms)
More applications of KGs:

® Ontology-guided distant supervision

® Healthcare: drug-drug interaction and drug adverse event detection

® And more, e.g., question answering and recommendation systems
Open Questions:

e Construction of knowledge graphs (manual v.s. automatic)

® Knowledge graph database indexing and query

® Dynamic knowledge graphs
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