Deep Learning for Automated Medical Coding

Shaoxiong Ji
shaoxiong.ji@aalto.fi

July 1, 2022 at LMU Munich

Shaoxiong Ji (shaoxiong.ji@aalto.fi) Deep Learning for Automated Medical Coding July 1, 2022 at LMU Munich

1/12



Medical Coding

Clinical Note A\
Diagnosis Code
..... the old patient with 401.9 Unspeciﬁ_ed essential
hypertension end > hypertension
stage oxygen Medical 496 Chronic airway
dependent chronic . obstruction
obstructive > COdlllg
pulmonary disease Model
...... was intubated on
arrival to ...... -> 96.71 Insertion of
: endotracheal tube

~—

Figure: An example of medical coding with ICD codes

® Standard translation of written patient descriptions

® Standardized treatment alignment; insurance reimbursement

e Extreme multi-label multi-class classification
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Effective CNN Encoding

Challenges

® Complex diagnosis information: professional medical vocabulary and noise e.g.,
non-standard synonyms and misspellings

® | engthy documents: from hundreds to thousands of tokens.
Solutions:

e Effective feature representation learning

e Effective convolutional networks (this talk)

¢ Improved BERT-baed (hierarchical) models or efficient transformers, e.g., DLAC (Feucht
et al., 2021)
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Gated Convolutional Networks
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Gated CNN-NCI, Findings of ACL 2021 (Ji
0 o] et al., 2021)
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Effective CNN Encoding: Results

Table: Results on MIMIC-11I dataset with top-50 ICD codes. “-" indicates no results reported in the
original paper.

Model AUC-ROC F1

Macro Micro | Macro Micro | P@5
C-MemNN (Prakash et al., 2017) 83.3 - - - 42.0
Attentive LSTM (Shi et al., 2017) - 90.0 - 53.2 -
CAML (Mullenbach et al., 2018) 87.5 90.9 53.2 61.4 60.9
MultiResCNN (Li and Yu, 2020) 89.9+0.4 92.840.2 | 60.6+1.1 67.0£0.3 | 64.1£0.1
HyperCore (Cao et al., 2020) 89.5+0.3 92.94+0.2 | 60.9+£0.1 66.3£0.1 | 63.2£0.2
GatedCNN-NCI (ours) 91.5+0.3 93.840.1 | 62.9+0.5 68.6+0.1 | 65.3+0.1

Conclusion References
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Effective CNN Encoding: Parameters

Table: Number of trainable parameters

Model num. params.
CAML (Mullenbach et al., 2018) 6.2M
DCAN (Ji et al., 2020) 8.7M
MultiResCNN (Li and Yu, 2020) 11.9M
ClinicalBERT (Alsentzer et al., 2019) 113.8M
GatedCNN-NCI 7.6M
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Multitask Medical Coding

® High-dimensional label space

o Different disease classification systems

® Multitask learning with different granularities

ICD branch

Label-wise
Attention
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Can multitask learning connect different medical coding systems?

00 .z::._ 00 .. o The embeddlngs Of
Y ¥ . . .pe
representative significant CCS
codes and their corresponding
ICD codes.
a) CCS code: 3 b) CCS code: 11
(2) (b) ® The relevant ICD codes are
, clustered around the respective
o B 2 significant CCS code.
. .. e MARN learns representations
. : that capture informative
relationships between the codes.
(c) CCS code: 195 (d) CCS code: 223
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Does the model optimized with focal loss balance the learning between
low- and high-frequency codes?

—— Trained model with BCE loss
—— Trained model with focal loss

000051 I Normalized binary cross entropy loss loss of

8 ol each ICD code, with x-axis sorted by code
sl frequency. The high-frequency codes are on
8 ] the left, the low-frequency codes on the right.
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5 MARN optimized with focal loss can balance
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00001 1 the learning of high- and low-frequency codes.
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Unified Encoder-Decoder Framework

Code Hierarchy Categories Functions Representative Methods
Encoders Extract text features CNN, RNN, graph neural net-
pooSo works, attention, Transformers,
Tttt XXX capsule networks
! XXXX Deep Con- Build deep architec- Stacking, residual networks, em-
1 XXX.XX nections ture bedding injection
1 Decoders Improve code predic- Linear layer, attention, hierar-
v 1 tion chical decoders, multitask de-
coders, few-shot/zero-shot de-
. coders
Clinical R?;f::;[_ Auxiliary Enha_nce feature Code de:sc_riptions, gode hierar-
Notes — |Encoder| — . — |Decoder " Data learning chy, Wikipedia articles, chart
tations Code Probability data, entities and concepts
@ Distribution

; Table: Categorization of building blocks under the
unified framework

External Data
and Knowledge

Multitask Unified Encoder-Decoder Framework
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Open Questions

Long-term Dependency and Scalability

Class Imbalance and Hierarchical Decoding
Updated Guidelines and Data Shift
Interpretability (post-hoc vs inherent interpretability)

Novel Encoder-decoder Architectures

Unified Encode
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