Optimizing Data Usage via Differentiable Rewards

Data Selection: What and Why

- Standard supervised learning:
 - o sample training instances with equal weights
 - o sensitivity to the structure and domain of data
 - o need to optimize the data usage
- Data selection:
 - selecting a subset
 - o instance weighting
 - o curriculum learning
 - o active learning
 - reinforcement learning (this paper)

Related Work

- data filtering critera & training curriculum
- domain-specific knowledge and hand-designed heuristics
- parameterized neural networks:
 - o curriculum learning method that trains a mentor network to select clean data based on features from both the data and the main model. (MentorNet, Jiang et al., 2018)
 - o teacher-student network (Fang et al., 2018) that directly optimizes development set accuracy over multiple training runs; single reward signal provided by dev set accuracy at the end of training
- we need:
 - no heuristics
 - generalizable to various tasks
 - o adaptively optimize the data usage

Reinforcement Learning for Data Selection

scorer network

minimizes the model loss on the development set

reward

 gradient alignment between the training examples and the dev set

optimization

- o bi-level optimization
- a direct differentiation of the scorer parameters to optimize the model loss on the dev set
- Differentiable Data Selection (DDS)

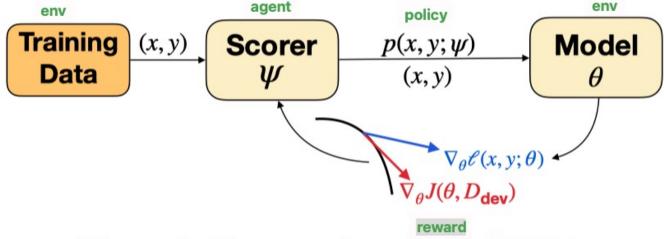


Figure 1: The general workflow of DDS.

Differentiable Data Selection

Learning objective

$$\theta^* = \underset{\theta}{\operatorname{argmin}} J(\theta, P) \text{ where } J(\theta, P) = \mathbb{E}_{x, y \sim P(X, Y)} [\ell(x, y; \theta)]$$

• Scorer network adjusts the weights of examples in D_{train} to minimize $J(\theta, D_{dev})$

$$\psi^* = \underset{\psi}{\operatorname{argmin}} J\left(\theta^*(\psi), \mathcal{D}_{\text{dev}}\right) \text{ where } \theta^*(\psi) = \underset{\theta}{\operatorname{argmin}} \mathbb{E}_{x, y \sim P(X, Y; \psi)}[\ell(x, y; \theta)]$$

- Reward of RL agent
 - o approximates the dev set performance of the resulting model after the model is updated on this example.

Learning to Optimize Data Usage

Scorer network update:

$$\psi_{t+1} \leftarrow \psi_t + \underbrace{\nabla_{\theta} \ell \left(x, y; \theta_{t-1} \right) \cdot \nabla_{\theta} J \left(\theta_t, \mathcal{D}_{\text{dev}} \right)}_{R(x,y)} \underbrace{\nabla_{\psi} \log(P(X, Y; \psi))}_{\text{REINFORCE (Wiliams, 1992)}}$$

Model update:

$$\theta_t \leftarrow \theta_{t-1} - \nabla_{\theta} J(\theta_{t-1}, P(X, Y; \psi))$$

Deriving Rewards through Direct Differentiation

Approximate derivation of the gradient:

$$\begin{split} &\nabla_{\psi} J\left(\theta_{t}, \mathcal{D}_{\text{dev}}\right) \\ &= \nabla_{\theta_{t}} J\left(\theta_{t}, \mathcal{D}_{\text{dev}}\right)^{\top} \cdot \nabla_{\psi} \theta_{t}(\psi) \text{ apply chain rule} \\ &= \nabla_{\theta_{t}} J\left(\theta_{t}, \mathcal{D}_{\text{dev}}\right)^{\top} \cdot \nabla_{\psi} \left(\theta_{t-1} - \nabla_{\theta} J\left(\theta_{t-1}, \psi\right)\right) \text{ subsitute } \theta_{t} \\ &\approx -\nabla_{\theta_{t}} J\left(\theta_{t}, \mathcal{D}_{\text{dev}}\right)^{\top} \cdot \nabla_{\psi} \left(\nabla_{\theta} J\left(\theta_{t-1}, \psi\right)\right) \text{ Markov assumption: } \nabla_{\psi} \theta_{t-1} \approx 0 \\ &= -\nabla_{\psi} \mathbb{E}_{x, y \sim P(X, Y; \psi)} \left[\nabla_{\theta} J\left(\theta_{t}, \mathcal{D}_{\text{dev}}\right)^{\top} \cdot \nabla_{\theta} \ell\left(x, y; \theta_{t-1}\right)\right] \underbrace{J\left(\theta_{t-1}, \psi\right) = \mathbb{E}_{x, y \sim P(X, Y; \psi)} \left[\ell(x, y; \theta_{t-1})\right]}_{= -\mathbb{E}_{x, y \sim P(X, Y; \psi)} \left[\left(\nabla_{\theta} J\left(\theta_{t}, \mathcal{D}_{\text{dev}}\right)^{\top} \cdot \nabla_{\theta} \ell\left(x, y; \theta_{t-1}\right)\right) \cdot \nabla_{\psi} \log P(x, y; \psi)\right] \end{split}$$

Instantiations of DDS

Classification

- identical model acrchitecture with independent weights
- uniform mini-batch data sampling
- scaled gradient update
- approximation of per-example gradient via first order Taylor expansion

$$v^{\top} \cdot \nabla_{\theta} \ell (x_i, y_i; \theta_{t-1})$$

$$\approx \frac{1}{\epsilon} (\ell (x_i, y_i; \theta_{t-1} + \epsilon v) - \ell (x_i, y_i; \theta_{t-1}))$$

Algorithm 1 Training a classification model with DDS.

Input : $\mathcal{D}_{\text{train}}$, \mathcal{D}_{dev}

Output : Optimal parameters θ^*

- 1 Initializer θ_0 and ψ_0
- 2 for t = 1 to num_train_steps do
- Sample B training data points $x_i, y_i \sim \text{Uniform}(\mathcal{D}_{\text{train}})$
- Sample B validation data points x_i', y_i' \sim Uniform $(\mathcal{D}_{\text{dev}})$
 - \triangleright Optimize θ

$$g_{\theta} \leftarrow \sum_{i=1}^{B} p(x_i, y_i; \psi_{t-1}) \nabla_{\theta} \ell(x_i, y_i; \theta_{t-1})$$

- Update $\theta_t \leftarrow \text{GradientUpdate}\left(\theta_{t-1}, g_{\theta}\right)$
 - \triangleright Evaluate θ_t on \mathcal{D}_{dev}

7 Let
$$d_{ heta} \leftarrow \frac{1}{B} \sum_{j=1}^{B} \nabla_{ heta} \ell(x_j', y_j'; \theta_t)$$

 \triangleright Optimize ψ

$$r_i \leftarrow d_{\theta}^{\top} \cdot \nabla_{\theta} \ell(x_i, y_i; \theta_{t-1})$$

- 9 Let $d_{\psi} \leftarrow \frac{1}{B} \sum_{i=1}^{B} \left[r_i \cdot \nabla_{\psi} \log p(x_i, y_i; \psi) \right]$
- 10 Update $\psi_t \leftarrow \text{GradientUpdate}(\psi_{t-1}, d_{\psi})$

end

Machine Translation

Settings

- S: low-resource language
- (S1, S2, ..., Sn): multilingual parallel corpus
- T: target language
- o dev set consists parallel data between S and T

Aim

 pick parallel data from any of the source languages to the target language to improve translation of a particular LRL S

```
Algorithm 2 Training multilingual NMT with DDS.
Input : \mathcal{D}_{train}; K: number of data to train the NMT model
               before updating \psi; E: number of updates for \psi;
               \alpha_1,\alpha_2: discount factors for the gradient
Output : The converged NMT model \theta^*
Initialize \psi_0, \theta_0
▶ Initialize the gradient of each source language
grad[S_i] \leftarrow 0 for i in n
while \theta not converged do
      X, Y \leftarrow \text{load\_data}(\psi, \mathcal{D}_{\text{train}}, K)
      ▶ Train the NMT model
      for x_i, y in X, Y do
           \theta_t \leftarrow \text{GradientUpdate}\left(\theta_{t-1}, \nabla_{\theta_{t-1}} \ell(x_i, y; \theta_{t-1})\right)

g[S_i] \leftarrow \alpha_1 \times g[S_i] + \alpha_2 \times \nabla_{\theta_{t-1}} \ell(x_i, y; \theta_{t-1})
      end
      \triangleright Optimize \psi
      for iter in E do
             sample B data pairs from \mathcal{D}_{\text{train}}
            r_i \leftarrow \mathsf{g}[S_i]^{\top}\mathsf{g}[S]
            rac{1}{B} \sum_{j=1}^{B} \sum_{i=1}^{n} \left[ r_{i} \nabla_{\psi_{t-1}} \log \left( p\left(S_{i} | y_{j}; \psi_{t-1} \right) \right) \right]
            \psi_t \leftarrow \text{GradientUpdate}(\psi_{t-1}, d_{\psi_{t-1}})
```

nd

Machine Translation

- Target conditioned sampling
 - assume a uniform distribution over the target sentence Y
 - \circ Given the target sentence, parameterize the conditional distribution of which source sentence to pick p(X|y; ψ)
- Only update ψ after updating the NMT model for a fixed number of steps
- Sample the data according to p(X|y; ψ) to get a Monte Carlo estimate of the objective of scorer network

```
Algorithm 2 Training multilingual NMT with DDS.
```

Input : $\mathcal{D}_{\text{train}}$; K: number of data to train the NMT model before updating ψ ; E: number of updates for ψ ; α_1,α_2 : discount factors for the gradient

Output : The converged NMT model θ^*

Initialize ψ_0 , θ_0

 \triangleright Initialize the gradient of each source language $grad[S_i] \leftarrow 0$ for i in n

while θ not converged do

$$X, Y \leftarrow \text{load_data}(\psi, \mathcal{D}_{\text{train}}, K)$$

⊳ Train the NMT model

for
$$x_i, y$$
 in X, Y do

$$\theta_{t} \leftarrow \text{GradientUpdate} \left(\theta_{t-1}, \nabla_{\theta_{t-1}} \ell(x_{i}, y; \theta_{t-1})\right)$$
$$g[S_{i}] \leftarrow \alpha_{1} \times g[S_{i}] + \alpha_{2} \times \nabla_{\theta_{t-1}} \ell(x_{i}, y; \theta_{t-1})$$

end

 \triangleright Optimize ψ

for iter in E do

sample
$$B$$
 data pairs from $\mathcal{D}_{\text{train}}$

$$r_{i} \leftarrow g[S_{i}]^{\top}g[S]$$

$$d_{\psi} \leftarrow$$

$$\frac{1}{B} \sum_{j=1}^{B} \sum_{i=1}^{n} \left[r_{i} \nabla_{\psi_{t-1}} \log \left(p\left(S_{i} | y_{j}; \psi_{t-1}\right) \right) \right]$$

$$\psi_{t} \leftarrow \text{GradientUpdate}(\psi_{t-1}, d_{\psi_{t-1}})$$

end

end

Experiments

Image Classification

• CIFAR-10:

- reduced setting of roughly 10% training labels, first 4k examples in the training set
- o pre-activation WideResNet-28

• ImageNet:

- o first 102 TFRecord shards
- post-activation ResNet-50

DDS with Prior Knowledge

- retrained DDS: initalize with trained scorer network
- TCS+DDS: initialize the parameters of DDS with the TCS heuristics

Baselines

- Uniform: standard supervised training
- SPCL: a curriculum learning method that dynamically updates the curriculum to focus more on the "easy" training examples based on model loss.

Filtering noisy data

- BatchWeight: scales example training loss in a batch with a locally optimized weight vector using a small set of clean data.
- MentorNet: select clean data based on features from both the data and the main model

Image Classification

Methods	CIFAR-10 (WRN-28-k)		ImageNet (ResNet-50)	
	4K, k = 2	Full, $k = 10$	10%	Full
Uniform	82.60±0.17	95.55±0.15	56.36/79.45	76.51/93.20
SPCL	81.09 ± 0.22	93.66 ± 0.12	-	-
BatchWeight	79.61 ± 0.50	94.11 ± 0.18	-	-
MentorNet	83.11 ± 0.62	94.92 ± 0.34	-	-
DDS	83.63 ± 0.29	96.31 ± 0.13	56.81/79.51	77.23/93.57
retrained DDS	85.56 ± 0.20	97.91 ± 0.12	-	-

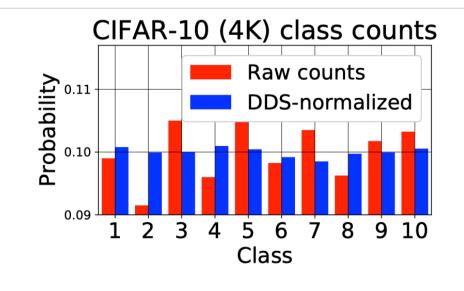


Figure 3: A trained DDS scorer learns to balance the class distributions of CIFAR-10 4K.

Image Classification

Figure 2: Example images from the ImageNet and their weights assigned by DDS. A trained DDS scorer assigns higher probabilities to images from ImageNet, in which the class content is more clear. Each image's label and weight in the minibatch is shown.

Multilingual NMT

Model

- standard LSTM-based attention model
- Dataset
 - TED: 58-language-to-English
- Baselines
 - Uniform: standard supervised training
 - SPCL: a curriculum learning method that dynamically updates the curriculum to focus more on the "easy" training examples based on model loss.

- Related: data is selected uniformly from the target LRL and a linguistically related HRL
- TCS: uniformly chooses target sentences, then picks which source sentence to use based on heuristics such as word overlap

Methods	aze	bel	glg	slk
Uniform	10.31	17.21	26.05	27.44
SPCL	9.07	16.99	23.64	21.44
Related	10.34	15.31	27.41	25.92
TCS	11.18	16.97	27.28	27.72
DDS	10.74	17.24	27.32	28.20*
TCS+DDS	11.84^{*}	$\boldsymbol{17.74}^{\dagger}$	27.78	27.74

Multilingual NMT

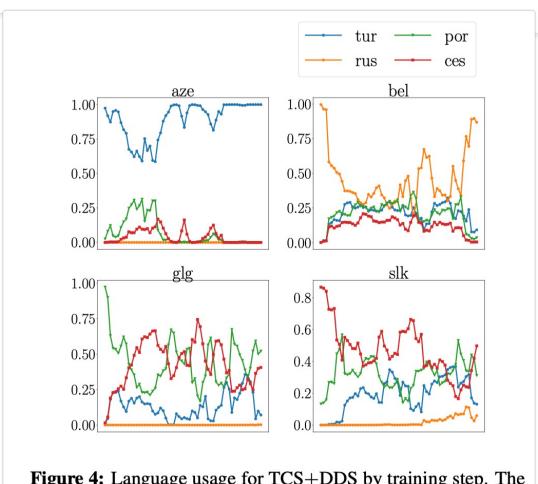


Figure 4: Language usage for TCS+DDS by training step. The distribution is initialized to focus on the most related HRL, and DDS learns to have a more balanced usage of all languages.shaoxiong.j

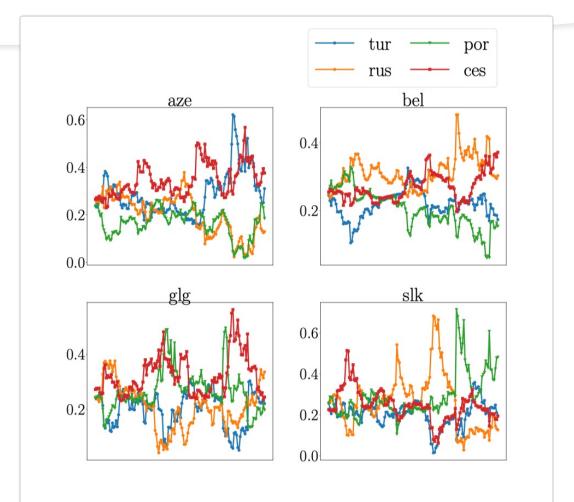


Figure 5: Language usage for DDS by training step. DDS learns weight the most related HRL after certain training steps.